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A basic formulation of the geometrical immersion method (GIM) for solving three-dimensional boundary-value problems in 
the differentially formulated theory of elasticity is given. If the canonical domain is taken to be the entire Euclidean space, the 
differential formulation reduces to the corresponding boundary integral equation whose kernel is the Kelvin-Somigliana tensor. 
The integral equation obtained is realized numerically using the boundary-element approrlmation. Numerical experiments confirm 
the theoretical convergence of the GIM iterative process. The efficiency of this approach compared with the traditional methods 
of boundary integral equations for solving three-dimensional problems on the theory of elasticity is due to the absence of 
computationally intensive steps which invert densely-packed matrices of the influence coefficients in the direct solution of algebraic 
systems of equations, and the choice of parameters that ensure convergence when iterative methods are used. 

Together with the finite-difference and finite-element methods, the boundary-element method (BEM) 
is widely used to calculate the stress-strain state of three-dimensional structures. It has a number of 
advantages [1], and, in particular, reduces the dimension of the original problem and, in consequence, 
reduces the order of the system of linear algebraic equations (SLAE) to be solved. However, in the 
BEM method the most laborious stage remains the solution of the SLAE with a densely-packed non- 
symmetric matrix of influence coefficients. 

Below we describe a boundary-element implementation of the differential formulation of the 
geometrical immersion method (GIM),-t which, on the one hand, enables one to preserve all the positive 
aspects of the BEM, and on the other hand replaces the process of solving the SLAE directly by an 
iterative procedure with guaranteed convergence, which leads to a significant saving in computing 
resources .  

1. D I F F E R E N T I A L  F O R M U L A T I O N  OF THE G E O M E T R I C A L  
I M M E R S I O N  M E T H O D  

Consider an elastic isotropic body occupying the domain D in Euclidean space R a with boundaries 
N 

s=osi 
I 

(Fig. 1). It is required to find the displacement vector u(x) of the theory of elasticity boundary-value 
problem 

diver(u)+f=O, x ~ D ;  n(x).or(x)=g(x), x ~ S  (1.1) 

where u, f and g are, respectively, the displacement vector, and the body and surface forces, x is the 
position vector of any point in the domain D, n is the outward normal to the boundary S, and ~ is the 
stress tensor. 

Hooke's law and Cauchy's relations have the form 

~r = k0E + 21xe, e = [(Vu) r + Vu]/2 (1.2) 
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s, 

Fig. 1. 

) 
where E is the unit tensor, 0 is the first invariant of the deformation tensor e, and X and g are the Lam6 
parameters. 

A generalized solution of boundary-value problem (1.1) may be obtained from a variational equation 
of the form 

Jo(u) . .e (v)dD= J f -vdD+J  g.vdS V~vV(D) (1.3) 
D D S 

which gives a minimum to the quadratic functional for the general potential energy of the elastic body 

~(v)= Io (u ) - , e (v )dD-2J  f . v d D - 2 1  g.vdS (1.4) 
D D S 

Here V(D) C (Hi(D)) n is a complete closed subspace of the Sobolev vector functions (111(1))) n [3]. 
The GIM asserts the poss~ility of establishing a relation between the solution of Eq. (1.3) and another 

complete closed subspace of vector functions 

Vo(DO)= {u ~(HI(Do))nlu=O, x ~ S~ --So.nS a } 

each element of which is defined in the domain Do, and also enables one to write a variational equation 
for the vector w 

let(w)., e(v)dD o = JIr(w).. e(v)dD a + ~ f .  vdD+ ~ g. vdS (1.5) 
D O DA O S 

Vv ~ V0(D0) 

Here D C Do, i.e. the original domain D is completely contained within the domain Do (which accounts 
for the name of the method), So is the boundary of Do, Da = Do/D is the complement of D in D O 
(see Fig. 1), Sa is the boundary of the domain DA, and S~ is that part of the boundary Sa which belongs 
to So. 

It has been shown (see the second footnote on p. 235) that when x ~ D the solution w of Eq. (1.5) 
gives the minimum of the functional (1.4) and is therefore a generalized solution of the original 
Eq. (1.3), i.e. w = u when x e D. 

We will solve the variational equation (1.5) by an iterative method, replacing w with w k on the left- 
hand side and w k-l on the right, with k = 1, 2 , . . . ;  w ° = 0. Applying the Gauss-Ostrogradskii theorem, 
we obtain the corresponding differential formulation of the problem 

divo.(w k) = - H ( D ) f - F ( $ 1 ) [ g + n  a .o'a(wk-t)], x ~ D o (1.6) 

n.ff(wk)=g; x ~ S n S o ;  wk=0,  x~S  1 

where H(D) is a generalized Heaviside-type function [4] equal to 1 when x ~ D and 0 when x e Da, 
F(S1) is a generalized Dirae-type function [4] centred on the boundary $1 = SNSA, n A is the outward 
unit normal to $1 relative to DA, and cra is the stress tensor in the limit as x approaches $1 from the 
complement D a. 
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It has been shown (see the second footnote on p. 235) that the sequence {w k} converges everywhere 
in the norm of Vo(Do), and therefore in the norm of V(D), irrespective of how different the original 
domain D is from the domain D O in which it is "immersed". 

If the entire Euclidean space/~3 is chosen to be the canonical domain Do, then an associated integral 
equation may be written for Eq. (1.6), in which Green's function G(x, 6) (the Kelvin-Somigliana tensor 
[2]) serves as the inverse operator to the boundary-value problem 

w ~ (x) = I G(x, ~ .  f(~)dD(~) + ~ G(x, ~). [g(~) + n a- o -a (w(~) k-I )]dS (1.7) 
D S 

Here ~ is the point of the domain at which integration is performed. 
Using standard methods of potential theory [1, 2], physical relations and Cauchy's relations (1.2), 

one can change from (1.7) to the boundary integral equations for the forces at the boundary of the 
domain under consideration 

tk (x) = l [ g ( x )  + t(x)k-I ] + SF(x, ~ .  [g(x) + t(x)k-t ]dS+ S F(x, ~) .  f ( '~)dD(~)  (1.8) 
s D 

Here x and ~ are points on the boundary S, ¥ is a point in the interior of D, tk(x) is the unknown 
force vector on the surface of the body at the kth iteration acting from the side of the complement Da, 
t°(x) = 0, and F(x, 6) is a singular kernel which is a second-rank tensor. 

Relation (1.8) enables us to determine directly the vector of the unknown forces at the boundary of 
S for a class of problems with specified conditions on the stresses. Using boundary integral equation 
methods one can obtain equations for the displacements, strains and stresses both inside the domain 
and on the boundary. 

The iterative integral equation (1.8) is the fundamental equation of the boundary-element imple- 
mentation of the differential formulation of the GIM. To obtain a discrete analogue to Eq. (1.8) we 
apply the extensively-developed procedures of the BEM, which removes the need to solve the SLAE 
for the unknown variables. The solution t k is determined by simply substituting the vector t k-1 found 
at the preceding iteration into the right-hand side of (1.8) (k = 1, 2, 3 . . . .  , L), where L is the number 
of completed iterations. 

2. N U M E R I C A L  I M P L E M E N T A T I O N  

A finite-dimensional analogue of Eq. (1.8) is constructed in accordance with the BEM approach [2]. The boundary 
S of the domain D is approximated by a set of N boundary elements. The boundary elements are discontinuous 
eight-cornered elements with quadratic coordinate approximation and with the unknown function represented in 
the form of a Lagrange polynomial of the first degree. It was pointed out in [1] that an additional advantage of 
this discretization is the possibility of easily combining elements of different shapes, because the approximations 
to the unknown functions do not have to be consistent between the elements. To compute the volume integral in 
(1.8) the interior of D was decomposed into M hexahedral cells with quadratic coordinate approximation and an 
integrable volume force function f. 

The integration of the singular functions with a strong singularity at the surface of the element requires special 
techniques and integration schemes and is performed numerically with a non-regular distribution of a set of Gaussian 
points along the curvilinear surface of the three-dimensional body. The volume integral in (1.8) is the integral of 
a function with a weak singularity [2] and is therefore computed in the usual manner using Gaussian quadrature. 

We write the discrete iterative matrix equation corresponding to (1.8) in the following form 

{t} k = 2({t}k-I + {g})+[ F ss ]({t} k-I + {g})+[ FS~ ]{f} (2.1) 

The superscripts s and ~ denote quantities that are obtained from data relating only to surface points (ss) or to 
points on the surface and in the volume (so). At the first step of the solution of the iterative equation the matrix 
coefficients of F ~, F ro and the derivatives of the matrix F ~ along the vector f are computed. L iterations are then 
performed with the zeroth approximation t o --- 0. The convergence of the iterative process is followed using the 
mean-square difference of two consecutive approximations: at the kth iteration 

/i k =lit k - t k-I II/lltll k (2.2) 

where II" tl is the mean-square norm. 
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3. C O N V E R G E N C E  OF T H E  G E O M E T R I C A L  I M M E R S I O N  M E T H O D  

It has been shown (see the second footnote on p. 235) theoretically that the iterative procedure of 
the GIM converges everywhere, irrespective of how different the original domain D is from Do. 
Numerical experience shows that the rate of convergence of the solution to the discrete iterative equation 
(2.1) depends to a large degree on factors like the precision of the integration of singular integrals over 
the surface, the level of discretization of the surface of the body, and the ratio of the volume of the 
body to its surface. On the whole one can say that a sufficient level of solution accuracy is achieved by 
integrating the surface integrals using a scheme containing 175 Gaussian points for singular (including 
the singular point) boundary elements, 100 points for elements dose  to the singular point, and 25 
integration points for elements far from the singular point. To obtain a satisfactory solution inside the 
domain the typical size of the boundary elements should not exceed 10% of the typical size of the object. 

Figure 2 shows convergence curves for the iterative GIM process for different levels of domain 
boundary discretization. The convergence parameter was chosen to be the relative variation of the 
quantity 8 (2.2) ~ = I ( 5k - ~k-1)/Sk 1, where k is the number of the iteration. The numerical experiment 
being performed was for the problem of a long cylinder subjected to unit external pressure along the 
lateral surface. (The cylinder had radius 1, length 48, shear modulus 1 and Poisson's ratio 0.3.) The 
surface of the cylinder was decomposed into 12, 15, 20 and 24 boundary elements (curves 1-4, 
respectively). 

As can be seen from curves 1-3, at a certain iteration the iterative GIM process diverges and it is semeless to 
continue. In this case the GIM also gives an erroneous solution which differs from the Lam~ solution for an infinitely 
long cylinder by more than 100%. To explain this phenomenon it is necessary completely to suspend the procedure 
for solving the SLAE and computing the solution at points of the domain. With a sufficiently good decomposition 
of the cylinder surface (curves 3 and 4) the convergence of the GIM iterations is good, and the resulting solution 
after 40 iterations differs from the solution of the BEM to the limits of the accuracy of the BEM procedure, and 
the error relative to the Lam6 solution does not exceed 2%. Hence the nature of the convergence of the iterative 
GIM procedure characterizes the discretization quality of the boundary of the object under consideration. 

Figure 3 shows the convergence of the solution (the displacement u x along the X axis) to the problem 
of a cube subjected to unit external pressure over its entire surface, according to the level of the boundary 
discretization. (The origin of coordinates is at the centre of the cube, the length of a side is 2, the shear 
modulus is 1 and Poisson's ratio is 0.3.) The curves shown are the relative error ~ = [(u~, - u x ) / u x l °  o x 

100% along thex  axis (where u ° is the exact solution): curves 1-3 correspond to 6, 24 and 54 elements. 

4. SOLVING P R O B L E M S .  TEST P R O B L E M S  

To check the reliability of the results obtained using the GIM, a range of test problems was solved, and comparisons 
were made with existing analytic solutions. Figure 4 shows the solution to the problem of a hollow cylinder loaded 
with unit pressure along the external lateral surface. The displacements Ur and stresses 6 ,  % were computed over 
the middle transverse section along the radius r (the dashed curves). The calculated values were compared with 
the l.amd solution for a hollow cylinder in a plane stressed state (the corresponding continuous curves). The external 
radius of the cylinder was 6, the internal radius was 1, the length of the cylinder was 5, the shear modulus was 1, 
and Poisson's ratio was 0.3. 

~M 

/O-J 

6' /0 20 30 N 

8 

0 
0,! 0,~ 0.7 x 

Fig. 2. Fig. 3. 
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The solution of the problem for a rotating disk with the same geometrical and physical parameters as in the 
preceding problem (the angular velocity was 1 and the density was 1) is shown in Fig. 5. The displacements u, and 
stresses o,, a~ were computed over the median cross-section along the radius r (the dashed curves 1-3, respectively). 
The calculated values were compared with the analytic solution obtained in [5] (the corresponding continuous 
curves). It is dear from the results shown in Fig. 5 that the agreement between the calculated and analytically 
obtained solutions is very good. 

Solution o f  the problem f o r  a perforated cylinder. To illustrate the effectiveness of the boundary-element 
implementation of the differential formulation of the GIM when calculating the stress-strain state of three- 
dimensional structures we solved the problem for a cylinder with an internal star-shaped channel. Figure 6 shows 
the numerical scheme for the domain under consideration. An eighth of the object was taken to be the computational 
domain. The surface was decomposed into 14 boundary elements, and in the volume integral the interior domain 
was decomposed into 64 three-dimensional cells. The solution for the median z = 0 cross-section of the cylinder 
was investigated along the radius r in two sections with angular coordinates q) = 0* and q~ = 45 °. 

Figure 7 shows the results of the solution of the problem with specified unit external pressure over the lateral 
surface of the cylinder (modulus of elasticity 100, Poisson's ratio 0.3): the displacements ur and stresses Or and a~ 
with 9 = 0* (curves 1-3) and along 9 = 45* (curves 4--6, respectively). 

Figure 8 shows the results obtained for a problem with the same cylinder rotating at constant angular velocity 
(angular velocity 10, density 1): the displacements ur and stresses ar and % along 9 = 0 ° (curves 1-3) and along 
q~ = 45* (curves 4--6, respectively). 

5. C O N C L U S I O N S  

It has been shown that the main advantage of  our proposed GIM method compared to the BEM 
method is that it removes the need to perform a laborious inversion operation on the non-symmetric 
densely-packed solution matrix. The GIM replaces this operation with a highly productive iterative 
process which does not require the selection of any parameters to ensure convergence (which is the 
case in methods traditionally used to solve SLAEs for every specific case). At the same time the GIM 
retains all the well-known advantages of the BEM. 

Fig. 6. 
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Table 1 

6rx/O ~ 
ay~/# -s 

2 

0 

-2 

Number of Number of Tune to set up Time to solve 
elements unknowns the SLAE, s the SLAE, s 

BEM GIM 

6 72 14 4.7 3.9 
24 288 93 267 45 
54 648 320 2860 217 

Table 1 shows the dependence of the processor time for the boundary element method and the 
geometrical immersion element on the number of unknowns in the SLAE. It should be noted that even 
with identical expenditure on setting-up the solution matrix and calculations for the internal points of 
the domain, the time taken to obtain the vector of unknowns in the GIM is significantly less than in 
the BEM. The saving in computer time is greater, the greater the dimension of the system. The results 
of the numerical experiment are given for an IBM PC AT/386 20 MHz. 

The iterative solution of equations in the GIM enables one to use a procedure for accelerating the 
convergence of the process, it is easy to mesh the RAM to the partitioned form of the matrix of the 
influence coefficients at rigid supports, and to apply parallel computation algorithms. 

Carefully based on theoretical considerations and developed in algorithms and programs, the GIM 
enables one to solve a wide class of three-dimensional problems with complex geometrical configura- 
tions, and its high efficiency and economy has been confirmed. 

This research was performed with the financial support of the Russian Foundation for Basic Research 
(93-013-16824). 
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